POTENSI METABOLIT SEKUNDER DARI JAMUR YANG BERASOSIASI DENGAN SPONS LAUT SEBAGAI SUMBER SENYAWA ANTIKANKER

  • Iqbal Anugrah Fitriyanto Program Studi Magister Ilmu Kedokteran Dasar Fakultas Kedokteran Universitas Padjadjaran Bandung, Indonesia
  • Muhammad Hasan Bashari Departemen Ilmu Kedokteran Dasar FK Unpad
  • Eko Fuji Ariyanto Departemen Ilmu Kedokteran Dasar FK Unpad

Abstract

Beban kesehatan yang ditimbulkan akibat kanker terus meningkat seiring dengan morbiditas
dan mortalitas yang nyata baik di negara maju maupun berkembang. Jamur laut merupakan
sumber metabolit sekunder yang berguna untuk tujuan penemuan obat. Sejumlah senyawa
metabolit yang dihasilkan oleh jamur laut telah menunjukkan efek antikanker kuat. Metabolit
Cytochalasin K yang dihasilkan jamur Arthrinium arundinis ZSDS1-F3 yang diisolasi dari
spons laut Phakellia fusca memiliki aktivitas sitotoksik terhadap lini sel K562, A549, Huh-7,
H1975, HL60, Hela, dan MOLT-4. Metabolit Disydonol A yang diproduksi oleh jamur
Aspergillus sp. yang diisolasi dari spons laut Xestospongia testudinaria memiliki aktivitas
sitotoksik terhadap lini sel HepG-2 and Caski. Metabolit Marilines A1 dan A2 yang
dihasilkan oleh jamur Stachylidium sp. yang diisolasi dari spons laut Callyspongia cf. C.
flammea memiliki aktivitas sitotoksik terhadap lini sel HLE. Dalam ulasan ini, kami
menyoroti beberapa jamur yang berasal dari laut dengan metabolit yang dapat memodulasi
aktivitas beberapa enzim yang berperan penting pada pertumbuhan dan metastasis sel tumor.


 


DOI : https://doi.org/10.35990/mk.v4n5.p553-566

References

DAFTAR PUSTAKA

1. Wang, J., Wang, Z., Ju, Z., Wan, J., Liao, S., Lin, X., et al. (2015). Cytotoxic cytochalasins from marine-derived fungus Arthrinium arundinis. Planta Med. 81, 160–166. doi: 10.1055/s-0034-1383403
2. Eamvijarn, A., Gomes, N. M., Dethoup, T., Buaruang, J., Manoch, L., Silva, A., et al. (2013). Bioactive meroditerpenes and indole alkaloids fromthe soil fungus Neosartorya fischeri (KUFC 6344), and the marine-derived fungi Neosartorya laciniosa (KUFC 7896) and Neosartorya tsunodae (KUFC 9213). Tetrahedron 69, 8583–8591. doi: 10.1016/j.tet.2013.07.078
3. Sun, L.-L., Shao, C. L., Chen, J. F., Guo, Z. Y., Fu, X. M., Chen, M., et al. (2012). New bisabolane sesquiterpenoids from a marine-derived fungus Aspergillus sp. isolated from the sponge Xestospongia testudinaria. Bioorg. Med. Chem. Lett. 22, 1326–1329. doi: 10.1016/j.bmcl.2011.12.083
4. Ayyad, S. E., Katoua, D. F., Alarif, W. M., Sobahi, T. R., Aly, M. M., Shaala, L. A., et al. (2015). Two new polyacetylene derivatives from the red sea sponge Xestospongia sp. Z. Naturforsch. C. Bio. Sci. 70, 297–303. doi: 10.1515/znc-2015-5015
Pharmacol. 25:333. doi: 10.3389/fphar.2016.00333
5. Almeida, C., Hemberger, Y., Schmitt, S. M., Bouhired, S., Natesan, L., Kehraus, S., et al. (2012). Marilines A-C: novel phthalimidines from the sponge-derived fungus Stachylidium sp. Chem. Eur. J. 18, 8827–8834. doi: 10.1002/chem.201103278
6. Sunil K., Ved P., Nihar R. (2018). Marine fungi: A Source of Potential Anticancer Compounds. doi: 10.3389/fmicb.2017.02536
7. Noman E., Al-Shaibani M., Bakhrebah M., Almoheer R., Al-Sahari M., Al-Gheethi A., et al. (2021). Potential of Anti-cancer Activity of Secondary Metabolic Products from Marine Fungi. Journal of Fungi. doi.org/10.3390/jof7060436
8. Gomes N., Lefranc F., Kijjoa A., Kiss R. (2015). Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?. Mar. Drugs 2015, 13, 3950-3991; doi:10.3390/md13063950
9. Vala, A.K.; Sachaniya, B.; Dudhagara, D.; Panseriya, H.Z.; Gosai, H.; Rawal, R.; Dave, B.P. Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. Int. J. Biol. Macromol. 2018, 108, 41–46.
10. Doriya, K.; Kumar, D.S. Solid state fermentation of mixed substrate for l-asparaginase production using tray and in-house designed rotary bioreactor. Biochem. Eng. J. 2018, 138, 188–196.
11. Paul, V.; Tiwary, B.N. An investigation on the acrylamide mitigation potential of l-asparaginase from Aspergillus terreus BV-C strain. Biocatal. Agric. Biotechnol. 2020, 27, 101677.
12. El-Gendy, M.M.A.A.; Awad, M.F.; El-Shenawy, F.S.; El-Bondkly, A.M.A. Production, purification, characterization, antioxidant and antiproliferative activities of extracellular L-asparaginase produced by Fusarium equiseti AHMF4. Saudi J. Biol. Sci. 2021, 28, 2540–2548.
13. Krishnapura, P.R.; Belur, P.D. Partial purification and characterization of L-asparaginase from an endophytic Talaromyces pinophilus isolated from the rhizomes of Curcuma amada. J. Mol. Catal. B Enzym. 2016, 124, 83–91.
14. Baskar, G.; Sree, N.S. Synthesis, characterization and anticancer activity of _-cyclodextrin-Asparaginase nanobi-ocomposite on prostate and lymphoma cancer cells. J. Drug Deliv. Sci. Technol. 2020, 55, 101417.
15. Jenila, A.V.; Gnanadoss, J.J. Formulation of A Suitabel Medium and its Optimization for Maximizing L-Asparaginase Production from Endophytic Fungi Fusarium sp. LCJ273. Biosci. Biotechnol. Res. Asia 2018, 15, 887–898.
16. Fan, B.; Dewapriya, P.; Li, F.; Grauso, L.; Blümel, M.; Mangoni, A.; Tasdemir, D. Pyrenosetin D, a New Pentacyclic Decalinoyltetramic Acid Derivative from the Algicolous Fungus Pyrenochaetopsis sp. FVE-087. Mar. Drugs 2020, 18, 281.
17. Ashok, A.; Doriya, K.; Rao, J.V.; Qureshi, A.; Tiwari, A.K.; Kumar, D.S. Microbes Producing L-Asparaginase free of Glutaminase and Urease isolated from Extreme Locations of Antarctic Soil and Moss. Sci. Rep. 2019, 9, 1423.
18. Elshafei, A.M.; El-Ghonemy, D.H. Screening and media optimization for enhancing L-asparaginase production, an anticancer agent, from different filamentous fungi in solid state fermentation. Biotechnol. J. Int. 2015, 1–15.
19. Golbabaie, A.; Nouri, H.; Moghimi, H.; Khaleghian, A. L-asparaginase production and enhancement by Sarocladium strictum: In vitro evaluation of anti-cancerous properties. J. Appl. Microbiol. 2020, 129, 356–366.
20. Nguyen, V.-T.; Lee, J.S.; Qian, Z.-J.; Li, Y.-X.; Kim, K.-N.; Heo, S.-J.; Jeon, Y.-J.; Park, W.S.; Choi, I.-W.; Je, J.-Y.; et al. Gliotoxin Isolated from Marine Fungus Aspergillus Sp. Induces Apoptosis of Human Cervical Cancer and Chondrosarcoma Cells. Mar. Drugs 2013, 12, 69–87.
21. Qi, C.; Gao, W.; Guan, D.; Wang, J.; Liu, M.; Chen, C.; Zhu, H.; Zhou, Y.; Lai, Y.; Hu, Z.; et al. Butenolides from a marine-derived fungus Aspergillus terreus with antitumor activities against pancreatic ductal adenocarcinoma cells. Bioorganic Med. Chem. 2018, 26, 5903–5910.
22. Malhão, F.; Ramos, A.A.; Buttachon, S.; Dethoup, T.; Kijjoa, A.; Rocha, E. Cytotoxic and Antiproliferative Effects of Preussin, a Hydroxypyrrolidine Derivative from the Marine Sponge-Associated Fungus Aspergillus candidus KUFA 0062, in a Panel of Breast Cancer Cell Lines and Using 2D and 3D Cultures. Mar. Drugs 2019, 17, 448.
23. Chen, J.-J.; Wang, S.-W.; Chiang, Y.-R.; Pang, K.-L.; Kuo, Y.-H.; Shih, T.-Y.; Lee, T.-H. Highly Oxygenated Constituents from a Marine Alga-Derived Fungus Aspergillus giganteus NTU967. Mar. Drugs 2020, 18, 303.
24. El-Hady, F.K.A.; Shaker, K.H.; Souleman, A.M.A.; Fayad, W.; Abdel-Aziz, M.S.; Hamed, A.A.; Iodice, C.; Tommonaro, G. Comparative Correlation Between Chemical Composition and Cytotoxic Potential of the Coral-Associated Fungus Aspergillus sp. 2C1-EGY Against Human Colon Cancer Cells. Curr. Microbiol. 2017, 74, 1294–1300.
25. Gederaas, O.A.; Søgaard, C.; Viset, T.; Bachke, S.; Bruheim, P.; Arum, C.-J.; Otterlei, M. Increased Anticancer Efficacy of Intravesical Mitomycin C Therapy when Combined with a PCNA Targeting Peptide. Transl. Oncol. 2014, 7, 812–823
26. Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378
27. Ashok, A.; Doriya, K.; Rao, J.V.; Qureshi, A.; Tiwari, A.K.; Kumar, D.S. Microbes Producing L-Asparaginase free of Glutaminase and Urease isolated from Extreme Locations of Antarctic Soil and Moss. Sci. Rep. 2019, 9, 1423.
28. Golbabaie, A.; Nouri, H.; Moghimi, H.; Khaleghian, A. L-asparaginase production and enhancement by Sarocladium strictum: In vitro evaluation of anti-cancerous properties. J. Appl. Microbiol. 2020, 129, 356–366.
29. Nguyen, V.-T.; Lee, J.S.; Qian, Z.-J.; Li, Y.-X.; Kim, K.-N.; Heo, S.-J.; Jeon, Y.-J.; Park, W.S.; Choi, I.-W.; Je, J.-Y.; et al. Gliotoxin Isolated from Marine Fungus Aspergillus Sp. Induces Apoptosis of Human Cervical Cancer and Chondrosarcoma Cells. Mar. Drugs 2013, 12, 69–87.
30. Qi, C.; Gao, W.; Guan, D.; Wang, J.; Liu, M.; Chen, C.; Zhu, H.; Zhou, Y.; Lai, Y.; Hu, Z.; et al. Butenolides from a marine-derived fungus Aspergillus terreus with antitumor activities against pancreatic ductal adenocarcinoma cells. Bioorganic Med. Chem. 2018, 26, 5903–5910.
31. Elshafei, A.M.; El-Ghonemy, D.H. Screening and media optimization for enhancing L-asparaginase production, an anticancer agent, from different filamentous fungi in solid state fermentation. Biotechnol. J. Int. 2015, 1–15.
32. Huang, C.; Jin, H.; Song, B.; Zhu, X.; Zhao, H.; Cai, J.; Lu, Y.; Chen, B.; Lin, Y. The cytotoxicity and anticancer mechanisms of alterporriol L, a marine bianthraquinone, against MCF-7 human breast cancer cells. Appl. Microbiol. Biotechnol. 2012, 93, 777–785
33. Malhão, F.; Ramos, A.A.; Buttachon, S.; Dethoup, T.; Kijjoa, A.; Rocha, E. Cytotoxic and Antiproliferative Effects of Preussin, a Hydroxypyrrolidine Derivative from the Marine Sponge-Associated Fungus Aspergillus candidus KUFA 0062, in a Panel of Breast Cancer Cell Lines and Using 2D and 3D Cultures. Mar. Drugs 2019, 17, 448
34. Pang, X.; Lin, X.;Wang, P.; Zhou, X.; Yang, B.;Wang, J.; Liu, Y. Perylenequione Derivatives with Anticancer Activities Isolated from the Marine Sponge-Derived Fungus, Alternaria sp. SCSIO41014. Mar. Drugs 2018, 16, 280.
35. Chen, J.-J.; Wang, S.-W.; Chiang, Y.-R.; Pang, K.-L.; Kuo, Y.-H.; Shih, T.-Y.; Lee, T.-H. Highly Oxygenated Constituents from a Marine Alga-Derived Fungus Aspergillus giganteus NTU967. Mar. Drugs 2020, 18, 303.
36. Fedrowitz, M.; Hass, R.; Bertram, C.; Löscher,W. Salivary _-amylase exhibits antiproliferative effects in primary cell cultures of rat mammary epithelial cells and human breast cancer cells. J. Exp. Clin. Cancer Res. 2011, 30, 102.
37. Ding, Y.-S.; Kim,W.-S.; Park, S.J.; Kim, S.-K. Apoptotic effect of physcion isolated from marine fungus Microsporum sp. in PC3 human prostate cancer cells. Fish. Aquat. Sci. 2018, 21, 22.
38. Eamvijarn, A.; Kijjoa, A.; Bruyère, C.; Mathieu, V.; Manoch, L.; Lefranc, F.; Silva, A.; Kiss, R.; Herz,W. Secondary Metabolites from a Culture of the Fungus Neosartorya pseudofischeri and Their In Vitro Cytostatic Activity in Human Cancer Cells. Planta Medica 2012, 78, 1767–1776.
Published
2022-01-03
How to Cite
FITRIYANTO, Iqbal Anugrah; BASHARI, Muhammad Hasan; ARIYANTO, Eko Fuji. POTENSI METABOLIT SEKUNDER DARI JAMUR YANG BERASOSIASI DENGAN SPONS LAUT SEBAGAI SUMBER SENYAWA ANTIKANKER. Medika Kartika : Jurnal Kedokteran dan Kesehatan, [S.l.], v. 4, n. 5, p. 553-566, jan. 2022. ISSN 2655-6537. Available at: <http://medikakartika.unjani.ac.id/medikakartika/index.php/mk/article/view/237>. Date accessed: 23 apr. 2024.