MATRIKS METALOPROTEINASE (MMP), ENZIM PENDEGRADASI KOLAGEN SEBAGAI TARGET UNTUK ANTIPENUAAN

  • Fanny Karuna Putri Program Studi Magister Kesehatan Penuaan Kulit dan Estetika, Fakultas Kedokteran, Universitas Kristen Maranatha, Bandung, Jawa Barat, Indonesia
  • Teresa Liliana Wargasetia Universitas Kristen Maranatha
  • Hana Ratnawati Program Studi Magister Kesehatan Penuaan Kulit dan Estetika, Fakultas Kedokteran, Universitas Kristen Maranatha, Bandung, Jawa Barat, Indonesia

Abstract

Makin bertambahnya usia, orang dewasa mengalami kondisi kulit yang menua. Faktor yang dapat menyebabkan proses terjadinya penuaan kulit yaitu faktor intrinsik dan ekstrinsik. Faktor ekstrinsik utama sebagai penyebab dalam mempercepat proses penuaan kulit yaitu pajanan sinar matahari yang mengandung sinar ultraviolet (UV), sehingga penuaan kulit tersebut sering disebut sebagai photoaging. Matriks metaloproteinase (MMP) adalah kelompok enzim pendegradasi kolagen yang diketahui berperan penting dalam peningkatan penuaan kulit secara ekstrinsik akibat pajanan sinar matahari (photoaging) pada kulit. Radiasi sinar ultraviolet dari sinar matahari menyebabkan akumulasi reactive oxygen species (ROS) sehingga semakin meningkat pula kadar matriks metaloproteinase dan kerusakan kolagen pada kulit. Secara spesifik, MMP1 menginisiasi degradasi dari serat kolagen tipe I dan III, yang selanjutnya degradasi dilanjutkan oleh MMP3 dan MMP9. Oleh karena itu pengetahuan mendalam terkait enzim-enzim MMP yang berperan dalam degradasi kolagen menjadi penting sebagai target pencegahan penuaan kulit dan terapi antipenuaan kulit.


Kata kunci:  MMP, penuaan kulit, photoaging


DOI : 10.35990/mk.v8n2.p185-197

References

1. Soheilifar MH, Masoudi-Khoram N, Shirkavand A, Ghorbanifar S. Non-coding RNAs in photoaging-related mechanisms: a new paradigm in skin health. Biogerontology. 2022;23(3):289–306.
2. Pangkahila W, Dharmawan B. Anti-aging medicine = memperlambat penuaan, meningkatkan kualitas hidup. Jakarta: Kompas, 2007.
3. Longo C, Casari A, Beretti F, Cesinaro AM, Pellacani G. Skin aging: In vivo microscopic assessment of epidermal and dermal changes by means of confocal microscopy. J Am Acad Dermatol 2013;68(3).
4. Helfrich YR, Sachs DL, Voorhees JJ. Overview of Skin Aging and Photoaging. Dermatol Nurs [homepage on the Internet] 2008;20(3):177–83; quiz 184. Available from: https://www.proquest.com/scholarly-journals/overview-skin-aging-photoaging/docview/224827896/se-2?accountid=17242
5. Baumann L. Skin ageing and its treatment. Journal of Pathology. 2007;211(2):241–251.
6. Kim DJ, Iwasaki A, Chien AL, Kang S. UVB-mediated DNA damage induces matrix metalloproteinases to promote photoaging in an AhR-and SP1-dependent manner. 2022;Available from: https://doi.org/10.1172/jci.
7. Cole MA, Quan T, Voorhees JJ, Fisher GJ. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal. 2018;12(1):35–43.
8. Zhang M, Zhang T, Tang Y, Ren G, Zhang Y, Ren X. Concentrated growth factor inhibits UVA-induced photoaging in human dermal fibroblasts via the MAPK/AP-1 pathway. Biosci Rep 2020;40(7).
9. Won H-R, Lee P, Oh S-R, Kim Y-M. Epigallocatechin-3-Gallate Suppresses the Expression of TNF-α-Induced MMP-1 via MAPK/ERK Signaling Pathways in Human Dermal Fibroblasts. 2021;
10. Chen B, Li R, Yan N, et al. Astragaloside IV controls collagen reduction in photoaging skin by improving transforming growth factor-β/Smad signaling suppression and inhibiting matrix metalloproteinase-1. Mol Med Rep 2015;11(5):3344–3348.
11. Wu M, Cronin K, Crane JS. Biochemistry, Collagen Synthesis. Treasure Island (FL) [homepage on the Internet] 2022 [cited 2023 Aug 3];(2023). Available from: https://www.ncbi.nlm.nih.gov/books/NBK507709/
12. D’souza Z, Chettiankandy TJ, Ahire (Sardar) MS, Thakur A, Sonawane SG, Sinha A. Collagen – structure, function and distribution in orodental tissues. Journal of Global Oral Health 2020;2:134–139.
13. Shanbhag S, Nayak A, Narayan R, Nayak UY. Anti-aging and sunscreens: Paradigm shift in cosmetics. Adv Pharm Bull. 2019;9(3):348–359.
14. Monteiro-Riviere N. Structure and Function of Skin. In: Toxicology of the skin-target organ series. 2006; p. 1–19.
15. Hani Y, Yousef H, Sharma S. Anatomy, Skin (Integument), Epidermis [Homepage on the Internet]. 2017; Available from: https://www.researchgate.net/publication/322063118
16. Khavkin J, Ellis DAF. Aging Skin: Histology, Physiology, and Pathology. Facial Plast Surg Clin North Am. 2011;19(2):229–234.
17. Bolke L, Schlippe G, Gerß J, Voss W. A collagen supplement improves skin hydration, elasticity, roughness, and density: Results of a randomized, placebo-controlled, blind study. Nutrients 2019;11(10).
18. Yusharyahya SN. Mekanisme Penuaan Kulit sebagai Dasar Pencegahan dan Pengobatan Kulit Menua. eJournal Kedokteran Indonesia 2021;9(2):150.
19. Han SH, Ballinger E, Choung SY, Kwon JY. Anti-Photoaging Effect of Hydrolysates from Pacific Whiting Skin via MAPK/AP-1, NF-κB, TGF-β/Smad, and Nrf-2/HO-1 Signaling Pathway in UVB-Induced Human Dermal Fibroblasts. Mar Drugs 2022;20(5).
20. Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of matrix metalloproteinases in Photoaging and photocarcinogenesis. Int J Mol Sci. 2016;17(6).
21. Geervliet E, Bansal R. Matrix Metalloproteinases as Potential Biomarkers and Therapeutic Targets in Liver Diseases. Cells. 2020;9(5).
22. Won H-R, Lee P, Oh S-R, Kim Y-M. Epigallocatechin-3-Gallate Suppresses the Expression of TNF-α-Induced MMP-1 via MAPK/ERK Signaling Pathways in Human Dermal Fibroblasts. 2021;
23. Nam EJ, Yoo G, Lee JY, et al. Glycosyl flavones from Humulus japonicus suppress MMP-1 production via decreasing oxidative stress in UVB irradiated human dermal fibroblasts. BMB Rep 2020;53(7):379–384.
24. Cui N, Hu M, Khalil RA. Biochemical and Biological Attributes of Matrix Metalloproteinases. In: Progress in Molecular Biology and Translational Science. Elsevier B.V., 2017; p. 1–73.
25. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–573.
26. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31:177–183.
27. Nabila YA, Damayanti D, Handayani S, Setyaningrum T. The Effect of Lifestyle on Skin Aging. Berkala Ilmu Kesehatan Kulit dan Kelamin [homepage on the Internet] 2021;33(2):110–115. Available from: https://e-journal.unair.ac.id/BIKK/article/view/22622
28. Gao W, Lin P, Hwang E, et al. Pterocarpus santalinus L. Regulated Ultraviolet B Irradiation-induced Procollagen Reduction and Matrix Metalloproteinases Expression Through Activation of TGF-β/Smad and Inhibition of the MAPK/AP-1 Pathway in Normal Human Dermal Fibroblasts. Photochem Photobiol 2018;94(1):139–149.
29. Puspita Sari W, Nisa Berawi K, Karima N, Penuaan pada Kulit dan Pendekatan Anti-Aging M. Managemen Topikal Anti-Aging pada Kulit.
30. Chang CH, Pauklin S. ROS and TGFβ: from pancreatic tumour growth to metastasis. Journal of Experimental and Clinical Cancer Research. 2021;40(1).
31. Lago JC, Puzzi MB. The effect of aging in primary human dermal fibroblasts. PLoS One 2019;14(7).
32. Iwahashi H KYMH. Decreased levels of endocytic collagen receptor Endo180 in dermal fibroblasts lead to decreased production of type I collagen and increased expression of matrix metalloproteinase-1. Photodermatol Photoimmunol Photomed [homepage on the Internet] 2021 [cited 2021 Sep 9];2(2022):150–157. Available from: doi: 10.1111/phpp.12728
33. Soheilifar MH, Masoudi-Khoram N, Shirkavand A, Ghorbanifar S. Non-coding RNAs in photoaging-related mechanisms: a new paradigm in skin health. Biogerontology [homepage on the Internet] 2022;23(3):289–306. Available from: https://doi.org/10.1007/s10522-022-09966-x
34. Yi Jin, Xianye Cheng, Xin Huang, et al. The role of Hrd1 in ultraviolet (UV) radiation induced photoaging. 2020 [cited 2023 Jul 19];12(9 november 2020). Available from: www.aging-us.com
35. Negari IP, Keshari S, Huang CM. Probiotic activity of staphylococcus epidermidis induces collagen type i production through FFAR2/P-ERK signaling. Int J Mol Sci 2021;22(3):1–14.
36. Nilla Permata Y, Hussaana A. PENGARUH KRIM EKSTRAK UBI UNGU (Ipomoea Batatas Var Ayumurasaki) TERHADAP MATRIKS METALLOPROTEINASE-1 DAN JUMLAH KOLAGEN DERMIS TIPE-I DAN TIPE-III (Penelitian Eksperimental Pada Mencit BALB/c yang Dipapar Sinar UV-B). Tunas Medika Jurnal Kedokteran & Kesehatan [homepage on the Internet] 2021;7(1). Available from: http://jurnal.ugj.ac.id/index.php/tumed
37. Hu L, Tan J, Yang X, et al. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice. Evidence-based Complementary and Alternative Medicine 2016;2016.
38. Benjamin MM, Khalil RA. Matrix Metalloproteinase Inhibitors as Investigative Tools in the Pathogenesis and Management of Vascular Disease.
39. Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors — Novel strategies bring new prospects. Biochim Biophys Acta Mol Cell Res. 2017;1864(11):1927–1939.
40. Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biology. 2015;44–46:247–254.
41. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim Biophys Acta Mol Cell Res. 2010;1803(1):55–71.
42. Brînzea A, Nedelcu RI, Turcu G, Antohe M, Zurac SA, Ion DA. TIMPs expression in lentigo maligna/lentigo maligna melanoma versus aged skin-a review of the literature and personal experience. Rom J Morphol Embryol [homepage on the Internet] 2017(3):717–721. Available from: http://www.rjme.ro/
43. Yoshizaki N, Fujii T, Hashizume R, Masaki H. A polymethoxyflavone mixture, extracted from orange peels, suppresses the UVB-induced expression of MMP-1. Exp Dermatol 2016;25:52–56.
44. Andarina R, Djauhari T. Antioksidan dalam dermatologi. JKK 2017;4(1):39–48.
45. Jung H, Lee EH, Lee TH, Cho MH. The methoxyflavonoid isosakuranetin suppresses UV-B-induced matrix metalloproteinase-1 expression and collagen degradation relevant for skin photoaging. Int J Mol Sci 2016;17(9).
46. Song YR, Lim WC, Han A, et al. Rose Petal Extract (Rosa gallica) Exerts Skin Whitening and Anti-Skin Wrinkle Effects. J Med Food [homepage on the Internet] 2020 [cited 2023 Aug 29];23(8):870–878. Available from: doi: 10.1089/jmf.2020.4705. Epub 2020 Jun 30. PMID: 32609563.
47. Jeong EH, Yang H, Kim JE, Lee KW. Safflower seed oil and its active compound acacetin inhibit UVB-induced skin photoaging. J Microbiol Biotechnol 2020;30(10):1567–1573.
48. Ghasemi S, Stevens MR, Hosn Centero SA. Thread Lift [Homepage on the Internet]. In: Keyhan SO, Fattahi T, Bagheri SC, Bohluli B, Amirzade-Iranaq MH, editors. Integrated Procedures in Facial Cosmetic Surgery. Cham: Springer International Publishing, 2021; p. 629–634.Available from: https://doi.org/10.1007/978-3-030-46993-1_54
49. Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol. 2012;4(3).
50. Cho SW, Shin BH, Heo CY, Shim JH. Efficacy study of the new polycaprolactone thread compared with other commercialized threads in a murine model. J Cosmet Dermatol 2021;20(9):2743–2749.
Published
2025-06-30
How to Cite
PUTRI, Fanny Karuna; WARGASETIA, Teresa Liliana; RATNAWATI, Hana. MATRIKS METALOPROTEINASE (MMP), ENZIM PENDEGRADASI KOLAGEN SEBAGAI TARGET UNTUK ANTIPENUAAN. Medika Kartika : Jurnal Kedokteran dan Kesehatan, [S.l.], v. 8, n. 2, p. 185-197, june 2025. ISSN 2655-6537. Available at: <http://medikakartika.unjani.ac.id/medikakartika/index.php/mk/article/view/825>. Date accessed: 19 july 2025.